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1. Introduction

Churchill Eisenhart was a good friend for over 20
years—a short span compared to the relationships many
of those here at NIST had with him, but the impression
he made on me and my work was of crucial importance
to me. We met through correspondence in 1972, and the
last letter I received from him—less than a month before
his death—is at the other end of a 4 inch file from the
first. I chose my title with Churchill in mind. When he
retired in 1983, I wrote to him that he had set the
standard for scholarly research in our field, and that is
how I thought of him—the standard. The illustration in
Fig. 1 that Mark Levenson1 chose to illustrate the an-
nouncement for this lecture could not have been more
apt. It is a picture from a book published in Frankfort in
1535 or 1536, a book on surveying by Jacob Ko¨bel
called,Geometrei[1], showing how a ‘‘right and lawful
rood’’ or rod of 16 feet should be determined by mea-
suring an essentially random selection of 16 men as they

1 Member of the Statistical Engineering Division of the NIST Comput-
ing and Applied Mathematics Laboratory.

leave church. Churchill owned a personal copy of that
book, and he was immensely proud of it.

Fig. 1. The determination of a ‘‘right and lawful rood’’ or rod in the
early sixteenth century in Germany by measuring an essentially ran-
dom selection of 16 men as they leave church.
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What is a ‘‘Standard’’?The Oxford English Dic-
tionary (OED) tells us that the word ‘‘Standard’’ in the
first sense means ‘‘A military or naval ensign,’’ a usage
that is traced back to the year 1138 and the Battle of the
Standard. (That is surely a recurring theme around
NIST!). The OED tells us that the origin of the other
sense of ‘‘standard’’—as ‘‘standard of weight or mea-
sure’’ is, in their words, ‘‘somewhat obscure.’’ I will
not shed any light on the evolution of the word ‘‘stan-
dard’’ in the sense we employ it today. I expect that both
senses long predate the sources even the OED gives, and
thus their origins and relations are lost to history. Instead
I have a different goal. I will discuss the historical rela-
tions of statistical concepts and standards. The discus-
sion will necessarily be highly selective.

I believe the types of numerical standards we discuss
today can be roughly described as falling into one of two
types, which I might callgoalsand limits. The first of
these is the standard as basis, as target, as goal, as ideal,
as an anchor for comparison. Such are the standards of
weight or measure—the meter or the liter, or the so-
called physical constants, such as the speed of light. The
other type is that of standards as tolerance levels, as
limits beyond which one cannot respectably go, such as
minimum standards of performance. This type of stan-
dard may be so high as to be all but unattainable, or so
low as to be ludicrous; the recent discussions of national
standards of educational attainment come to mind.

The two types of standards have features in common.
First, their primary use is for comparison. And second,
the idea of a standard entails some sense of permanence.
We simply would not think of transitory standards as
true standards; a standard must be for all time, or at least
for some considerable length of time. Yet as this audi-

ence knows full well, permanent does not mean never
changing. Even the great constants of nature have been
known to slip, to shift in ways that contradict common
preconceptions. Jack Youden’s famous 1968 address on
‘‘Enduring Values’’ [2] made the point for interlabora-
tory testing brilliantly by showing how the most funda-
mental of ‘‘constants’’—the astronomical unit and the
speed of light—have appeared to change over time, as
changes of experimental technique have made a mock-
ery of the statisticians’ nominal error bars. Of the 15
measurements of the Astronomical Unit that he pre-
sented (Table 1), not a single one fell within the range of
possible values given by its immediate predecessor. The
variations in the speed of light were not much better
(Fig. 2).

A different sort of slippage is at least as common, and
more generally known, in regard to standards as limits.
Standards of what we will accept (or at least tolerate)
evolve for many reasons. Here is an example from mili-
tary history; the source for these data by the way is Karl
Marx’s, Das Kapital! [3] (Table 2). So ‘‘standards’’ are
not truly ‘‘constants.’’

My thesis is a very simple one: historically consid-
ered, standards and statistics are nearly inseparable.
Without the problems of standards in the OED’s second
sense (that is, not standards as flags), we would not have
modern statistics. And without statistical concepts we
would not have standards, much less the National Insti-
tute of Standards and Technology. Now, thisthesis is so
simple as to be almost self-evident, and is surely so
congenial to this audience, that I shall not spend long in
demonstrating it. I shall give a short and selective histor-
ical account, a few examples, and then try to see what
counter-evidence might be offered.

Table 1. Different values reported for the Astronomical Unit (from Youden, 1972)

Source of measurement A.U. in Experimenter’s estimate
Number and date millions of of spread

miles

1 Newcomb, 1895 93.28 93.20–93.35
2 Hinks, 1901 92.83 92.79–92.87
3 Noteboom, 1921 92.91 92.90–92.92
4 Spencer Jones, 1928 92.87 92.82–92.91
5 Spencer Jones, 1931 93.00 92.99–93.01
6 Witt, 1933 92.91 92.90–92.92
7 Adams, 1941 92.84 92.77–92.92
8 Brouwer, 1950 92.977 92.945–93.008
9 Rabe, 1950 92.9148 92.9107–92.9190

10 Millstone Hill, 1958 92.874 92.873–92.875
11 Jodrell Bank, 1959 92.876 92.871–92.882
12 S. T. L., 1960 92.9251 92.9166–92.9335
13 Jodrell Bank, 1961 92.960 92.958–92.962
14 Cal. Tech., 1961 92.956 92.955–92.957
15 Soviets, 1961 92.813 92.810–92.816
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Fig. 2. Measurements of the speed of light with the reported errors (from Youden, 1972; giving as the source
McNish, 1962).

Table 2. Minimum height accepted for service in the military, France
and Saxony (from Marx, 1906 quoting von Liebig, 1863)

Year Height

1780 178 cm
1789 165 cm
1818 157 cm
1852 156 cm
1862 155 cm

Coinage and Sampling

The history of the relationship of statistics and stan-
dards actually goes back as far as either of the two terms
have been traced, back at least to the middle of the
twelfth century. The first example I have in mind makes
the point extremely well. In the century after the Nor-
man invasion of 1066, a monetary system evolved in
England where an independent mint, the London Mint,
would mint gold coins from ingots furnished by the
king, the barons, or by others in trade. Obviously in
such a situation there was a need to provide checks on
the amount and fineness of the gold in the coinage. The
power of the English king was insufficient to merely
assert the value of the coins.

A system was set up as early as the year 1150 that was
called the Trial of the Pyx, where the mint’s coinage
would be put to test [4]. Think for a moment what would
be needed for such a test: a standard and statistical meth-
ods. A standard would be needed for comparison, for
how else to tell if a newly minted coin was as promised?
As a standard of fineness, a bar of gold was retained in
a safe place as a reference. And statistical methods were
needed, for two reasons. First, the sheer volume of the
coinage would make individual weighing of each coin
extremely difficult, and second, tests of fineness were
destructive, making tests of each coin impossible.

So sampling was needed, and being needed, it was
invented. The earliest documents are not specific about
how the samples would be drawn, but it is impossible to
believe that the different (and very suspicious) parties
would have been satisfied with a selection that they did
not see as essentially random. One description from the
year 1280 refers to the coins being placed on a table,
then being ‘‘well turned over and thoroughly mixed by
the hands of the Master of the Mint and the Changer, let
the Changer take a handful in the middle of the heap,
moving round nine or ten times in one direction or the
other, until he has taken six pounds.’’
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But sampling was not the only statistical method born
of necessity in this trial; there were two others of note.
One of these was one whose history Churchill special-
ized in, the Mean. In order to avoid having vaguely
understood uncertainties of weighing mask major varia-
tions in the weight of coins, the coins were weighed in
aggregate, say 100 at a time. Essentially, then, it was the
average weight of the tested coins that was compared
with the standard. Of course from the point of view of
experimental design, this was admirable—the aggregate
was subject to one measurement error rather than one
hundred. And there was yet another statistical method
employed, an allowance for variability. Because mint
technology was notperfected, it was granted by all that
some allowance had to be made for variability. If the
coins weighed too little, the barons were being cheated
and the acceptance of the coins in circulation was jeop-
ardized. If the coins weighed too much, the larger coins
would be culled from circulation, melted, and recoined,
with the profit going to the merchant. Neither situation
was tolerable. The allowance that the contract specified
was called the Remedy, because measures outside these
limits would need to be remedied by the Master of the
Mint. In some early documents it stated that the Master
was at risk in life and limb!

Let me emphasize the point of this example: Two
standards were needed, one of each type: the standard of
weight and the standard of tolerance (the Remedy).
These standards could not be useful without the statisti-
cal methods that were invented for that purpose, and the
statistical methods would not have been invented but for
the need for the standards. But lest you think that the
appearance of all statistical methods is historically in-
evitable when they are needed, let me tell you one thing
more about the Trial of the Pyx, about the method that
was not invented, and not invented because of a lack of
statistical theory. It is true that at an early time the
barons of the exchequer had the notions of sampling, of
aggregation, and of allowance for variability. But they
did not know how to put them together. Essentially, they
specified the allowance for a single coin, then extrapo-
lated it by multiplication to get an allowance for the
aggregate. In modern parlance, they multiplied byn, not
by square root ofn. They did not know theÏn rule,
which was only known after De Moivre found it to hold
for the binomial in 1731. This left the way open for
exploitation, and a limited amount of evidence suggests
that there was, indeed, gradual exploitation, as Masters
of the Mint discovered how they could slightly short-
weight coins and still remain safe. The English testified
that the French did this, and I suspect the French felt the
same about the English.

Least Squares and Geodesy

Let me move to another, much more recent example,
to one of Churchill’s favorite topics—least squares
[5,6]. The story of the discovery of least squares is
well-known, but it may not be as widely appreciated as
it should be, that the discovery wasspecificallymade in
pursuit of the solution of a problem in standards. In the
1790s, in the aftermath of the French Revolution, the
French decided to create a new system of weights and
measures, the metric system. The base, the standard of
the metric system, was to be the meter, and the defini-
tion of the meter was to be such that the length of a
meridian quadrant, the distance from the NorthPole to
the Equator along the surface of the Earth, was to be
10 000 000 meters. And on ‘‘purely objective’’ grounds,
the French determined that not justanymeridian quad-
rant would do—it was to be the meridian quadrant that
passed through the Observatory of Paris. Teams were
dispatched to measure the arc from Paris to Barcelona,
and it fell to the mathematicians in Paris to complete the
calculation, to reduce the observations, to determine the
ellipticity of this arc, and to find once and for all time
the standard meter. The mathematician most closely
involved was Adrian Marie Legendre. And in the course
of this study, Legendre discovered least squares. Most
historical accounts emphasize the role of astronomy in
the development of least squares, but it is clear that,
despite the fact that Legendre published his discovery in
a book on the orbits of comets, it was the determination
of the meter that had inspired him. Even in the 1805
book on comets, the only worked example of least
squares—and the only published example for several
years afterwards—was Legendre’s analysis of the data
on the French meridian arc.

So least squares owes its discovery to standards. It
would perhaps be too much to claim that if the French
had not needed the length of the meter, least squares
would not have appeared about that time. But I think the
converse is valid: The need for the meter called forth the
method of least squares, just as the measurement of a
different meridian arc had brought forward the method
of least deviations regression a half-century earlier in the
work of Boscovich [6,7]. The French had seen a need
for a precise determination, a need that could not be met
by available methods, and the best minds of the time had
responded with the single most useful statistical method
of all time. A problem of standards had called forth
statistical creativity, and through statistics the standard
meter was created. But it is worth pausing here to note
what did not appear. In 1805 Legendre had given power-
ful expression to the method of least squares, but not to
an assessment of its accuracy.
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In fact, there wasno probability in Legendre’s least
squares. Only with the work of Gauss, not published
until 4 years later, do we find probability: the normal
distribution, standard errors of coefficients, weighted
analyses. What could account for this strange dis-
crepancy? Was it only, as some historical accounts might
seems to suggest, only a reflection of the fact (which
few would dispute) that Gauss was a better mathemati-
cian than Legendre? I venture to suggest a different
explanation. It is simply this: Legendre’s basic charge
was to determine asinglestandard, the meter, through
the most precise analysis of the observational data rele-
vant to the problem. He sought the most precise French
meter, based on French data on the French arc. He did
not use other available data from outside France, even
though they would have afforded a more accurate read-
ing on the ellipticity and therefore on the meter. Indeed,
there is a sense in which an assessment of uncertainty
would have been detrimental to his mission. Can you
imagine how happy Napoleon would have been if Leg-
endre had come in with two bars in hand and an-
nounced, ‘‘Sire! We have found the meter—it is some-
where in length between this bar and this bar!’’

Gauss on the other hand was primarily interested in
problems in astronomy where uncertainty was a staple
of life. My argument has the following corollary: prob-
lems in the determination of basic standards (the first of
my two types) may have inspired the heights of statisti-
cal ingenuity, but the precise determination of basic
physical constants and the determination of the uncer-
tainty in those determinations are uneasy bedfellows.
Admission of the second of these (uncertainty) can be
seen by the insecure as undermining the first. That of
course was a message that Churchill spent much energy
on, trying to encourage researchers to feel more secure
in facing an uncertain world [8], and it was one of
Youden’s messages as well [2]. I have seen abundant
historical evidence to support this corollary. Some time
ago I was engaged in an historical retrospective on the
performance of modern estimators on ancient data sets.
I readily found examples from astronomers, but when I
looked for some in chemists’ early attempts to deter-
mine molecular weights, I was surprised by what I
found. Without exception, the best work I found gave
great detail on the experiments, but it only reported
numerical results for the handful of experimental runs
that gave the favored answer, except for the last one or
two decimal places.

I have mentioned some areas in statistics where statis-
tical innovation has been inspired by problems of stan-
dards, and one (the assessment of uncertainty of con-
stants) where the historical relationship is not of this
sort. Are there other examples where statistics and stan-
dards have not gone hand in hand? Yes, I would submit

that the entire area of the measurement of statistical
association grew up quite distant from the study of stan-
dards, and surely there are many others. This is not to
say that there are any areas in statistics that are not
happily at home in the modern NIST, only that there are
some that did not grow to maturity either at NIST or in
one of its cousin institutes around the world.

I want to comment on two other aspects of the rela-
tionship of statistics and standards, and then present a
curious historical example of a statistical construct that
has itself become a standard. The first of these two
aspects is the way statistical considerations have deter-
mined the very notion of what is a ‘‘standard’’; the
second is the way the lack of a commonly understood
‘‘standard of statistics’’ has impeded the development of
the subject of statistics. The first of these is of course
well known (in at least some instances) to this audience.
In 1805, the meter was a simple length, based upon the
magnitude of the Earth as determined by the best scien-
tists of France and thus of the world. In 1890 the meter
was a metal bar resting comfortably in Paris, and the
speed of light was a time determined from distance and
angular measurements that were in turn derived from
that metal bar. The bar was the standard of distance and
indirectly of all else. In 1984 the meter was no longer
the primary standard; light itself had taken over that
role. In 180 years there had been a revolution of stan-
dards, from Earth to bar to light. What had happened?

Here is another example, commonplace in some re-
spects, exotic in others. Currently, a price index is sim-
ply this: A commodity or package of commodities is
defined, and the price to obtain that commodity is deter-
mined. That price is then followed over time. The com-
modity (or package) is the standard; the price is tran-
sient, changing as the world changes, perhaps daily. But
it was not always so. Look at this example from more
than 3 centuries ago (Figs. 3a and 3b). In 1665 London
suffered through the last of the great plagues. A statisti-
cal offshoot of the plagues was the weekly publication
of the Bills of Mortality, primarily lists of deaths, clas-
sified by region and by cause. But the Bills of Mortality
also included something for the living—birth statistics
and a price index. The price index was subtly different
from what we have now. It gave the weekly amount of
bread a penny would buy. In 1665 the penny was the
standard, and the amount of bread was transient, the
reverse of what we have now, the same kind of reversal
that took place in the past century between the meter
and the speed of light. I submit that statistical consider-
ations underlie both reversals.

The principle is very simple. Standards are for com-
parison, and the surest, best-anchored, best-determined
quantity serves as the best standard. In 1805 the Earth
was the most certain base. By 1890, too much was
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Fig. 3a. The title page of a 1665 compilation of the Bills of Mortality.

known of variations in the Earth to maintain that belief,
and the metal bar was much better understood and alto-
gether more certain. In 1983, the properties of light
were thought to be better known than the length of an
expanding, contracting, disintegrating metal bar, and an-
other change was made. In our modern economy, agri-
cultural production for all its problems is relatively more
stable than in the 17th century, and our beleaguered
penny is infinitely finely divisible. In 1665 the penny
was the constant, divisible only on a very limited dis-
crete scale, and the natural choice of standard went the
other way. In both cases the choice of standard was
fundamentally statistical: the standard is that choice
which is most accurately measured and most accurately
transported, conveyed to whatever use it may be put.

Statistics and the Definition of Standards

The other aspect of the relationship of statistics and
standards, that I will comment on before moving to my

final example, is the curious way a lack of a commonly
understood standard has impeded the development of
statistics in the past. I give two historical instances.
Jacob Bernoulli and Thomas Bayes both published
posthumously, and some historians have made excuses
for them that amounted to this: ‘‘They just didn’t get
around to it.’’ I reject that excuse. Both of them were
first-rate minds who wrote their works well before they
died, or so we now believe. Both of these posthumous
works are now acknowledged to be masterpieces. I be-
lieve they both deferred publication for the same rea-
son—the lack of a standard of reference that could tell
them how close to certainty is ‘‘good enough.’’ Put
crudely, they lacked the functional equivalent of a widely
accepted 5 % level as a criterion—a standard of my
second type, of tolerance. Bernoulli had proved a mar-
velous approximation theorem, but when he tried an
example, he guessed that certainty to one part in a
thousand was needed. He found himself concluding that
over 25 000 trials would be needed to make a statement
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Before the Great Plague
April 11–18, 1665

The peak of the Great Plague
Sept. 12-19, 1665

Fig. 3b. The Bills of Mortality for the weeks of April 11–18, 1665 (before London felt the force of that year Great Plague), and September 12–19,
1665 (at the peak of the Plague, when 7165 deaths were classified as due to the plague). At the bottom of each Bill there is a price index, given
as the weight of a loaf of bread costing a penny.

about the chance of rain, and that number was unaccept-
ably large. Bayes tried to bound the incomplete beta
integral in order to compute the posterior probability of
an event, and his bounds were a whopping 0.15 apart. I
conjecture that if these pioneers had had a commonly
accepted standard of accuracy to serve as a benchmark,
then not only would they have felt sufficiently confident
about their results to see them through to publication,
but the acceptance of the work would have proceeded
much more rapidly. In conversation, Daniel Horvitz2 has
made the intriguing suggestion that similar lack of refer-
ence standards is holding back surveys today.

The Normal as a Standard

Let me close with a report on a curious example, one
where a statistical object has itself become a standard,
with some interesting consequences. Perhaps no statisti-

cal object is as well known today as the normal curve.
It is celebrated in book titles as the ‘‘Bell Curve.’’ It is
castigated in book reviews as the‘‘Bell Curve.’’ For the
past 20 years William Kruskal [9] and I have been re-
searching this object, mostly with an eye on the evolu-
tion of its name.

The normal curve has enjoyed many names in many
languages over the past 2 1/2 centuries. Normal and
Gaussian are only the best known. The dozens of other
names range from the commonplace (‘‘the law of er-
ror’’) to the colorful (‘‘the gendarme’s hat’’) to the
exotic (‘‘the exponic hillock’’). Galton wrote of the
curve that if the Greeks had known of it they would have
deified it. With all this attention, it is not surprising that
it has become a standard for statistical analysis. In fact,
we discover that in 1838, about 50 years before it ac-
quired the normal name, Augustus De Morgan proposed
calling it the ‘‘standard distribution.’’ If you think about
it, there is enough logic to that proposal that you wonder
why it did not catch on. Both ‘‘normal’’ and ‘‘stan-
dard’’ are terms that convey two somewhat contradic-

2 Daniel Horvitz is a well known statistician and past Executive Direc-
tor of the American Statistical Association.
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tory senses—they both may be read as meaning the
‘‘usual’’ or as meaning the ‘‘ideal,’’ and are frequently
seen as both of these.

The normal distribution has given rise to other stan-
dards, in particular those two troubling terms whose
importance Churchill did so much to emphasize, the
standard error and the standard deviation. Incidentally,
we are just past the centennial of the standard deviation.
It was in 1893 that Karl Pearson shifted, in his
manuscript notes, from referring to it as the ‘‘standard
divergence’’ to the ‘‘standard deviation.’’

I digress with an advertisement, a plug for a new
‘‘standard normal’’ I proposed in 1983 [10]. Laboring
for years to convince students that the usual ‘‘standard
normal curve,’’

f (x) =
1

Ï2p
e2

x2

2

was nothing to fear, and often failing because of its
bewildering array of symbols, led me to think of a sim-
ple alternative:

f (x) = e2px2

And why not? This is a normal curve (variance = 1/2p).
It requires no normalizing constant, has no square root
sign, no extraneous twos. And it has many other nice
properties (for example, its quartiles are near6 1/4)
(Table 3). It did not catch on then, but I present it for
your renewed consideration nonetheless, much in the
spirit of an ingenious proposal I learned about from
Churchill Eisenhart many years ago.

Table 3. Some advantages of the new standard normal (from Stigler,
1983) [10]

Density f (x) = e2px2
f (x) =

1

Ï2p
e2

x2

2

f (0) 1
1

Ï2p
= 0.39894

Quartile
1
4

0.675
(approx.)

Mean deviation
1
p

Ï2
p

Standard deviation
1
2

Îp

2
of the sample

median

Statisticians are often approached by experimenters
and asked, how large a sample should I take? This can
lead to an extensive discussion: What is your problem?
How large a difference is important? Are the measures
correlated, etc., etc.? But Churchill had a simpler solu-
tion: ask no questions, just say ‘‘six.’’ Why taken = 6,
I asked? Simple, he replied, the 0.975 % point for the
Student’st -distribution withn 2 1 = 5 degrees of free-
dom is about equal to the square root of 6, and so these
factors cancel in the 95 % confidence intervalX 6
t0.975,n21s/Ïn, andX 6 s is an approximate 95 % confi-
dence interval for the mean. Physicists often quote this
interval (and have for years), and this way the statement
will actually be correct, and as a bonus there is no need
to bother with more data!

While it is perhaps not surprising that the normal
curve has been adopted as a standard of data representa-
tion, I have occasionally been astonished to see just how
far this adoption has gone. Let me give you some exam-
ples.

In 1875, a paper appeared with the provocative title
‘‘Action of Denuding Agencies’’ [11]. While the paper
may not have lived up to the promise of its title (it was
a paper on geological erosion), it was remarkable
nonetheless. The author, Tylor, adopted as a standard
the normal curve (he called it the ‘‘binomial curve or
curve of denudation’’), and treated deficiencies from its
outline in actual hills as evidence of erosion—‘‘denuda-
tion.’’ There may be an argument that could be invoked
to defend this absurd procedure, but Tylor did not give
it (Fig. 4).

In 1869, a Swedish statistician named Balchen who
was sufficiently eminent to go as his country’s represen-
tative to an International Statistical Congress at the
Hague, presented a lecture on methodology that is
bizarre in ways that surprise even today [12]. Balchen
explained the use of the mean through a worked exam-
ple. He gave Swedish data on births from the years
1851–1855, classified by month of the year, expressed
as percents. Thus 8.796 % of the births occurred in
January, 8.792 % in February, etc. (Fig. 5). He gave the
mean percent as 8.33 %. Of course since the percents
add to 100 %, the mean would have been 1004 12 =
8.33 %, even if all the births had been in January.
Balchen’s comment must then be one of the greatest
understatements in history: ‘‘Deduced from a large
number of observations, this mean can be regarded as
sufficiently free from all influence of accidental
causes.’’ As clinching testimony for the worth of this
mean, he stated that the values arrayed themselves about
that mean in a normal curve. The method he used to
construct that curve apparently remains a secret.
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Fig. 4. Tylor, 1875, fitting of the normal (or ‘‘binomial’’) curve to a hill.

But anyone who thinks that Balchen had reached the
limits of his incompetence here would be mistaken. He
went on from births to trade statistics, giving the differ-
ence of exports and imports for Swedish provinces from
1856 to 1866, together with their mean. This mean,
however, he judged as worthless. Why? Because when
the time series was plotted, it followed a ‘‘forme
irrégulière et bizarre,’’ not a nice symmetric normal
curve!

It is comforting to see examples like this and feel that,
as prone as we are now to blundering, perhaps things are
improving.

Concluding Remarks

Last May, a month before he died, Churchill wrote to
me for what was to be the last time. I had sent him my
obituary of W. Edwards Deming, and he was sending
me his obituary of Deming for the Newsletter of the
Standards Alumni Association; I expect it was the last
piece he wrote. The obituary was vintage Churchill, full
of facts that no one else could have known, quietly

correcting errors and omissions in many other accounts
of Deming, including my own. His letter closed with his
characteristic sign-off—‘‘Cherrio for now.’’ On this oc-
casion I join you in saluting his memory, and with
Churchill firmly in mind close with his words, ‘‘Cherrio
for now...’’.
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a

b

Fig. 5. Passages from Balchen, 1869, showing two of the most egregious blunders in the history of statistics,
(a) the calculation of the mean of a column of percents and its justification by a fanciful normal curve, and
(b) the denial that the mean level of a times series is meaningful on the basis that the series does not follow
a normal curve.
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